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Abstract. Higher-order Lagrangians onT ∗(M) invariant under the natural representation of
gauge fields ofM × U(1) on the cotangent bundle are determined.

1. Introduction

Let π : P → M be aG-principal bundle. The geometric interpretation of Utiyama’s
theorem ([4, 18]) states that a LagrangianL on the 1-jet bundle of the connections ofP
is invariant under the natural representation of the gauge algebra ofP on connections,
if and only if L factors through the curvature mappingκ (this is the map sending each
connection0 onto its curvature form�0 = dω0 + [ω0, ω0]) as followsL = L̄◦κ, whereL̄
is a function on the curvature bundle—viewed as a zero-order Lagrangian—which in turn
must be invariant under the gauge algebra representation. In the Abelian case the above
statement is particularly simple sincēL automatically becomes gauge invariant as the adjoint
representation of the Abelian groupG is trivial and hence the theorem simply states that
the Lagrangian is invariant if and only if it factors through the curvature mapping, which
is nothing but the exterior differential ofω0 in this case.

The aim of this paper is to extend the above result to higher-order Lagrangians. Without
doubt, in field theory the most important Abelian group isU(1), so we confine ourselves
to considering the trivial bundleM ×U(1), where the manifoldM can be understood to be
a spacetime. However, we do not make any hypothesis on it, assuming throughout thatM

is an arbitraryn-dimensionalC∞ manifold.

2. Gauge algebra representation onJr(T ∗M )

2.1. Introducing the coordinate systems

Let (N; q1, . . . , qn) be an open coordinate domain inM. As usual, let us denote by(qi, pi)
the coordinate system induced on(p1)−1(N) from (N; q1, . . . , qn), p1 : T ∗M → M being
the canonical projection; i.e.

w =
n∑
i=1

pi(w)(dqi)x x ∈ M
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7758 J Muñoz Masqu´e and L M P Coronado

for every covectorw ∈ T ∗
x (M), where df denotes the differential of a functionf ∈ C∞(M).

We parametrize the points inU(1) as z = exp(it), so that(q1, . . . , qn; t) is a coordinate
system forM × U(1). Let us denote by(qj , piα), 1 6 i, j 6 n, 0 6 |α| 6 r, pi0 = pi ,
the coordinate system induced on(p1)−1

r (N), where(p1)r : J r(T ∗M) → M stands for the
canonical projection; i.e.

piα(j
r
xω) = ∂ |α|(pi ◦ ω)

∂q
α1
1 . . . ∂q

αn
n

(x) (1)

for every r-jet of differential form j rxω ∈ J r(T ∗M), α = (α1, . . . , αn) ∈ Nn, |α| =
α1 + · · · + αn. More generally, ifpk :

∧k
T ∗M → M is the canonical projection and

(qj , pi1,...,ik ), 1 6 j, i1 < · · · < ik 6 n, stands for the induced coordinate system on
(pk)−1(N), that is,

wk =
∑

16i1<···<ik6n
pi1,...,ik (wk)(dqi1)x ∧ · · · ∧ (dqik )x (2)

for everyk-covectorwk ∈ ∧kT ∗
x M, then we denote by

(qj , p
i1,...,ik
α ) 1 6 j, i1 < · · · < ik 6 n 0 6 |α| 6 r

the induced coordinate system on(pk)−1
r (N), defined as in formula (1). Basically, we are

concerned with the casesk = 1, 2.

2.2. Gauge fields onM × U (1)

As is well known (e.g. [4(3.2), 8(III.35), 13(3.1)]), gauge transformations onM ×U(1) can
be identified with the automorphisms ofM × U(1) that induce the identity overM. More
precisely, an automorphism ofM ×U(1) is a diffeomorphism8 : M ×U(1) → M ×U(1)
such that8(u · g) = 8(u) · g, ∀u ∈ M × U(1), ∀g ∈ U(1). This implies that8 maps
each fibre of pr1 : M × U(1) → M onto another fibre and hence there exists a unique
diffeomorphismφ making the following diagram commutative:

M × U(1)
8−−−−−−−→ M × U(1)

pr1

y ypr1

M
φ−−−−−−−→ M

If φ is the identity map ofM, then we say that8 is a bundle automorphism or a
gauge transformation and this means that8 transforms each fibre ofM × U(1) onto
itself. It is not difficult to see that bundle automorphisms are locally parametrized as
8(x, t) = (x, t + ψ(x)), for a differentiable functionψ : N → R (cf [9, III.B]). Let us
denote by Gau(M × U(1)) the gauge group of the bundle; i.e. the group of all bundle
automorphisms. Geometrically, thegauge algebraof an arbitrary principal bundle is
introduced as the ‘infinitesimal version’ of its gauge group (cf [4(3.2.9–3.2.17), 8(III.35
p 278)]). This means that a vector field belongs to the gauge algebra of the bundle if and
only if the flow that it generates belongs to the gauge group; that is, it consists of gauge
transformations. Let8s , s ∈ R, be the flow of a vector fieldX ∈ X(M × U(1)). Then, it
is quickly checked that8s ∈ Gau(M ×U(1)), ∀s (that is,X belongs to the gauge algebra)
if and only if:

(1)X is aU(1)-invariant, i.e.Rz ·X = X, ∀z ∈ U(1), whereRz stands for the translation
by the elementz; and

(2) X is a pr1-vertical vector field onM × U(1); i.e. (pr1)∗X = 0.
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Accordingly, we denote the vector fields satisfying (1) and (2) by gau(M×U(1)). Also,
it is easy to prove (e.g. see [9]) that a vector fieldX onM×U(1) belongs to gau(M×U(1))
if and only if it can be locally written as

X = g(q1, . . . , qn)
∂

∂t
g ∈ C∞(N). (3)

2.3. The bundle of connections ofM × U (1) andT ∗M

Let π : P → M be an arbitrary principal bundle of structure groupG. The groupG acts
on the tangent bundle ofP in a natural way. SetQ = T (P )/G. Then,Q is endowed
with a natural vector bundle structure overM, whose sections can be identified with the
G-invariant vector fields ofP , and we have the following exact sequence of vector bundles
overM, the so-calledAtiyah sequence(cf [2, Theorem 1]):

0 → L(P ) → Q
π∗−→ T (M) → 0

whereL(P ) stands for the adjoint bundle; i.e. the bundle associated toP by the adjoint
representation ofG on its Lie algebra. Given a connection0 onP , the horizontal liftX∗ of a
vector fieldX onM is aG-invariant vector fieldπ -projectable ontoX (cf [10, II. Proposition
1.2]). Hence, we can define a sectionσ0 : T (M) → Q of the projectionπ∗ : Q → T (M) in
the Atiyah sequence by settingσ0(X) = X∗, which completely determines the connection
0. Moreover, any such section is induced by the horizontal lifting of a connection onP ;
in other words, the connections on a principal bundle can be identified with the splittings
of the Atiyah sequence of the given bundle (cf [2, p 188]). In this way we can construct
a fibre bundlep : C(P ) → M (the bundle of connections) whose global sections coincide
with the connections onP , as follows.

The fibre ofC(P ) over a pointx ∈ M consists of all linear mapss : Tx(M) → Qx

such thatπ∗ ◦ s is the identity map of the tangent spaceTx(M). If s ′ is another element in
C(P )x , then for every tangent vectorX ∈ Tx(M) we have

π∗((s ′ − s)(X)) = π∗(s ′(X))− π∗(s(X)) = X −X = 0

and accordingly,(s ′ − s)(X) ∈ kerπ∗ = L(P ); or, equivalently,s ′ − s ∈ T ∗
x (M)⊗ L(P )x .

Furthermore, if we add a homomorphismh ∈ T ∗
x (M)⊗L(P )x to an elements ∈ C(P )x , we

obtain another elements+h in C(P )x . Because of this, we say thatC(P ) is an affine bundle
modelled over the vector bundleT ∗(M) ⊗ L(P ). For the details of this construction we
refer the reader to [7]. By virtue of the properties of the horizontal lifting, every connection
0 determines a section ofp : C(P ) → M by the formulax 7→ σ0(x), and conversely.

The cotangent bundle occurs in this theory as it can be canonically identified with the
bundle of connections of the trivialU(1)-principal bundle pr1 : M × U(1) → M; i.e. we
have a natural isomorphism of fibre bundles

C(M × U(1)) ∼= T ∗(M).

In fact, letA be the standard basis of the Lie algebra ofU(1); i.e. A is the vector ofu(1)
determined by the homomorphismR → U(1), t 7→ exp(it). Then, every connection of
the formω0 can be uniquely written asω0 = (dt + (pr1)

∗ω)⊗ A, whereω is an arbitrary
one-form onM, and the isomorphism between the bundle of connections ofM ×U(1) and
T ∗M is stated by settingω0 ↔ ω.
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2.4. Representing gau(M × U(1)) in X(J r(T ∗M))

Each bundle automorphism8 : M × U(1) → M × U(1) acts on the connections of this
bundle by the ruleω8·0 = (8−1)∗ω0([10, II, Proposition 6.1(a) and (b)]). Taking into
account the identification between the bundle of connections ofM × U(1) andT ∗M, the
above action induces a diffeomorphism of the cotangent bundle8̃ : T ∗M → T ∗M, such that
p1◦8̃ = p1. In this way we obtain a group homomorphism Gau(M×U(1)) → Diff (T ∗M).
Let 8t be the local flow of a vector fieldX ∈ gau(M × U(1)). Then,8̃t is the local flow
of a vector fieldX̃ ∈ X(T ∗M), and the mappingX 7→ X̃ establishes a representation of
gau(M × U(1)) into X(T ∗M), whose local expression is given by ([9])

X̃ = −
n∑
i=1

∂g

∂qi

∂

∂pi
(4)

if the local expression forX is that of formula (3). In other words, the natural representation
of the gauge algebra on the bundle of connections ofM × U(1) coincides with the
Hamiltonian vector field associated to the functiong in formula (3) with respect to the
exterior differential of Liouville’s form on the cotangent bundle.

The general formulae of vector field prolongation by infinitesimal contact transformation
to jet bundles (see [12] or [14]) and formula (4) above, then provide the following local
expression of ther-jet prolongation of the vector field̃X, denoted byX̃(r):

X̃(r) = −
n∑
i=1

r∑
|α|=0

∂ |α|+1g

∂qα+(i)
∂

∂piα
(5)

where(i) stands for the multi-index(i) = (0, . . . ,
(i)

1, . . . ,0).

3. Classification of invariant Lagrangians

3.1. Invariant Lagrangians onJ r(T ∗M)

In the geometric formulation of the Lagrangian formalism for variational problems defined
on a fibered manifoldp : N → M, the notion of arth-order Lagrangian is introduced as an
arbitrary differentiable functionL : J r(N) → R defined on ther-jet bundle of local sections
of p : N → M (e.g. see [1, 11, 8, (IV.51)]). Therefore, in our case arth-order Lagrangian
is nothing other than a differentiable functionL : J r(T ∗M) → R. Locally, L can be thus
expressed as a differentiable function of the coordinates(qj , p

i
α), 1 6 i, j 6 n, 0 6 |α| 6 r,

pi0 = pi , defined in section 2.1; or in other words,L depends on the coordinates of a point
in the ground manifoldM and on the partial derivatives up to orderr of the components
of a generic one-form onM. Such a Lagrangian is said to begauge invariantif for every
vector fieldX ∈ gau(M × U(1)), we have

X̃(r)(L) = −
n∑
i=1

r∑
|α|=0

∂ |α|+1g

∂qα+(i)
∂L
∂piα

= 0.

From this formula we thus quickly obtain the following proposition.

Proposition 1. A rth-order LagrangianL on T ∗M is gauge invariant if and only if it
satisfies the following equations:

n∑
i=1

∂L
∂piβ−(i)

= 0 ∀β ∈ Nn, 1 6 |β| 6 r + 1. (6)
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In particular, for|β| = 1, 2, we obtain∂L/∂pi = 0, ∂L/∂pij+∂L/∂pji = 0, respectively,
which essentially is the contents of Utiyama’s theorem in the Abelian case; that is, a first-
order Lagrangian is gauge invariant if and only if it can be locally written as

L = L̄(qh, pij − p
j

i ), 1 6 h, i < j 6 n.

Remark 1. For first-order Lagrangians the preceding definition of gauge invariance
is nothing other than the standard general notion of invariance for Lagrangians defined
on the connections of aG-principal bundle in the particular caseG = U(1) (e.g. see
[4, 10.2.15]) and in fact we obtain exactly the same results. Nevertheless, the advantage
of the preceding formulation lies in the fact that it allows us to generalize the notion of
gauge invariance directly to arbitrary order Lagrangians in a very natural way. Let us
explain this in detail. As is well known ([3, 15, 17]), the transformation law of a gauge
potential on aG-principal bundle under a gauge transformationh ∈ C∞(M,G) is given by
A′ = h dh−1 + hAh−1. In the particular caseG = U(1), we thus haveA′ = h dh−1 + A.
Writing h(x) = exp(iψ(x)) and identifyingA to an arbitrary one formA = Ai dqi on M,
we then obtainA′

i = Ai + ∂ψ/∂qi , or more intrinsicallyω′ = ω + dψ . This certainly
shows that Maxwell’s equationsδ(dω) = δF = 0 remain invariant under the family of
transformationsϕtω = ω+ t dψ . Moreover, probably the most simple method of obtaining
Euler–Lagrangian equations which are invariant under gauge transformations is to start
with a gauge invariant Lagrangian. In any case, we know that gauge invariant Lagrangians
produce gauge invariant field equations. According to the previous transformation rules,
the LagrangianL(x,Ai(x), ∂Ai/∂qj (x)) is gauge invariant if and only if

L(x,Ai(x)+ ∂ψ/∂qi(x), ∂Ai/∂qj (x)+ ∂2ψ/∂qi∂qj (x)) = L(x,Ai(x), ∂Ai/∂qj (x)).
From the above equation, it is not difficult to prove thatL should be independent ofAi , and
should only depend on∂Ai/∂qj through∂Ai/∂qj − ∂Aj/∂qi , which are the components of
the curvature form. With the notations introduced in 2.1, notice thatpij (j

1
x ω) = ∂Ai/∂qj (x),

so that the preceding result can be restated by saying thatL is a differentiable function of
qi andpij − p

j

i , as we did above.

3.2. The operatorsδr−1
k

In order to classify higher-order invariant Lagrangians we need to introduce some
preliminary tools. The exterior derivative

d : 0

(
M,

k∧
T ∗(M)

)
→ 0

(
M,

k+1∧
T ∗(M)

)
is a first-order differential operator so that it factors linearly through the 1-jet extension
giving rise to a homomorphism of vector bundles overM:

δk : J 1

( k∧
T ∗M

)
−→

k+1∧
T ∗M (7)

i.e. δk is the unique homomorphism of vector bundles such thatδk(j
1
x ωk) = (dωk)x , for

every differentialk-form ωk of M defined on a neighbourhood ofx ∈ M (cf [5(14.1),
16(Th́eor̀eme II.4a)]). By applying theJ r−1 function to this map and restricting to the
holonomic subbundle, we can define a homomorphism of vector bundles

δr−1
k : J r

( k∧
T ∗M

)
→ J r−1

( k+1∧
T ∗M

)
(8)
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as being the composite

J r
( k∧

T ∗M
)
↪→ J r−1

(
J 1

( k∧
T ∗M

))
J r−1(δk)−→ J r−1

( k+1∧
T ∗M

)
(9)

that is, δr−1
k (j rxωk) = j r−1

x (dωk). Then, we state the following ‘jet version’ of Poincaré’s
lemma.

Proposition 2. The following exact sequence of homomorphisms of vector bundles over
M, holds true:

J r+1

( k−1∧
T ∗M

)
δrk−1−→ J r

( k∧
T ∗M

)
δr−1
k−→ J r−1

( k+1∧
T ∗M

)
.

Proof. We first recall that for every vector bundleE → M, we have an exact sequence
of vector bundles overM:

0 → SrT ∗(M)⊗ E → J r(E) → J r−1(E) → 0. (10)

Letting E = ∧k−1
T ∗M, we prove that the restriction ofδrk−1 to the subbundle

Sr+1T ∗(M) ⊗ ∧k−1
T ∗M ⊂ J r+1(

∧k−1
T ∗M) coincides with the Spencer operator

(cf [6, (VIII. Proposition 2.1), 12, (II section 22, formula (22.4)]). To do this, let us consider
a coordinate system(N; q1, . . . , qn) centred atx ∈ M, so that the element

t = (dqi0)x � · · · � (dqir )x ⊗ (dqj2)x ∧ · · · ∧ (dqjk )x ∈ Sr+1T ∗
x (M)⊗ ∧k−1T ∗

x (M)

can be identified to

j r+1
x (qi0 . . . qirdqj2 ∧ . . . ∧ dqjk ) ∈ J r+1

x

( k−1∧
T ∗(M)

)
.

Hence, the element

δr−1
k (t) = j r+1

x

( r∑
h=0

qi0 . . . q̂ih . . . qirdqih ∧ dqj2 ∧ · · · ∧ dqjk

)
is identified to
r∑
h=0

(dqi0)x � · · · � (d̂qih)x � · · · � (dqir )x ⊗ (dqih)x ∧ (dqj2)x ∧ · · · ∧ (dqjk )x

thus proving our claim. Moreover, it follows from the definition of the operatorsδr−1
k , that

δr−1
k ◦ δrk−1 = 0.

In order to prove that Kerδr−1
k ⊆ Im δrk−1, we proceed by induction onr. For r = 1,

we have the following commutative diagram:

0 0 0
↓ ↓ ↓

S2T ∗M ⊗ ∧k−1
T ∗M −→ T ∗M ⊗ ∧k

T ∗M −→ ∧k+1
T ∗M

↓ ↓ ↓
J 2(

∧k−1
T ∗M)

δ1
k−1−→ J 1(

∧k
T ∗M)

δ0
k−→ ∧k+1

T ∗M
↓ ↓ ↓

J 1(
∧k−1

T ∗M)
δ0
k−1−→ ∧k

T ∗M −→ 0
↓ ↓
0 0.
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The first row is nothing but a part of Koszul’s complex so that it is exact. Furthermore,
δ0
k−1is surjective as it is checked working in local coordinates; in fact,δ0

k−1(j
1
x (qi1 dqi2 ∧

· · · ∧ dqik )) = (dqi1)x ∧ · · · ∧ (dqik )x . Hence, the second row of the diagram is also exact.
For r > 2, we have a commutative diagram

0 0 0
↓ ↓ ↓

Sr+1T ∗M ⊗ ∧k−1
T ∗M −→ SrT ∗M ⊗ ∧k

T ∗M −→ Sr−1T ∗M ⊗ ∧k+1
T ∗M

↓ ↓ ↓
J r+1(

∧k−1
T ∗M)

δrk−1−→ J r(
∧k

T ∗M)
δr−1
k−→ J r−1(

∧k+1
T ∗M)

↓ ↓ ↓
J r(

∧k−1
T ∗M)

δr−1
k−1−→ J r−1(

∧k
T ∗M)

δr−2
k−→ J r−2(

∧k+1
T ∗M)

↓ ↓ ↓
0 0 0.

Again, the first row is exact as it is a part of Koszul’s complex and the third row is also
exact by virtue of the induction hypothesis. Hence the exactness of the second row can be
proved by diagram-chasing. �

Proposition 3. If M is connected, the homomorphism

δrk−1 : J r+1

( k−1∧
T ∗M

)
−→ J r

( k∧
T ∗M

)
is of constant rank. Accordingly, Imδrk−1 and Kerδrk−1 are vector subbundles of

J r(
∧k

T ∗M) andJ r+1(
∧k−1

T ∗M), respectively.

Proof. As M is connected, given two pointsx, x ′ ∈ M, there exists a diffeomorphism
ϕ : M → M, such thatϕ(x) = x ′. From the propertyϕ∗(dωk−1) = d(ϕ∗ωk−1), we deduce
a commutative diagram

J r+1
x (

∧k−1
T ∗M)

δrk−1−→ J rx (
∧k

T ∗M)
Jr+1(

∧k−1
ϕ∗) ↑ o o ↑ J r (

∧k
ϕ∗)

J r+1
x ′ (

∧k−1
T ∗M)

δrk−1−→ J rx ′(
∧k

T ∗M)

and since the vertical arrows are isomorphisms, we obtain rkx δ
r
k−1 = rkx ′ δrk−1. �

3.3. The classification theorem

Theorem 4. With the above notations, for everyr > 2, we set

Zr−1
2 (M) = Im δr−1

1 = Ker δr−2
2 ⊆ J r−1

( 2∧
T ∗M

)
.

Then, a LagrangianL : J r(T ∗M) → R is gauge invariant if and only if it can be written
asL = L̄ ◦ δr−1

1 , for a differentiable functionL̄ : Zr−1
2 (M) → R.
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Proof. The problem reduces to proving thatL is gauge invariant if and only if it is
constant on the fibres ofδr−1

1 , asδr−1
1 : J r(T ∗M) → Zr−1

2 (M) is a surjective submersion.
Furthermore, the fibres ofδr−1

1 are connected as they are affine spaces; in fact, for every
one-formω onM we have

(δr−1
1 )−1(j r−1

x (dω)) = (δr−1
1 )−1(0x)+ j rx (ω) (11)

where 0x stands for the zero vector inJ r−1
x (

∧2
T ∗M). Hence, it suffices to prove thatL is

gauge invariant iff for everyδr−1
1 -vertical vector fieldY on J r(T ∗M) we haveY (L) = 0.

According to formula (6) characterizing gauge invariant Lagrangians, all we need to prove
is that the tangent spaces to the fibres ofδr−1

1 are spanned by the vector fields

Yβ =
n∑
i=1

∂

∂piβ−(i)
∀β ∈ Nn, 1 6 |β| 6 r + 1.

Moreover, as a calculation shows, the local equations for the homomorphismδr−1
1 are as

follows:

p
ij

β ◦ δr−1
1 = piβ+(j) − p

j

β+(i) i < j, 0 6 |β| 6 r − 1.

Hence(δr−1
1 )∗(Yβ) = 0, thus proving that the vector fieldsYβ are tangential to the fibres of

δr−1
1 . It is not difficult to see that the vector fieldsYβ are linearly independent so that

rk{Yβ |1 6 |β| 6 r + 1} = #{β ∈ Nn|1 6 |β| 6 r + 1}

=
r+1∑
k=1

(
n+ k − 1

k

)
=

(
n+ r + 1
r + 1

)
− 1

and from formula (11) we have

dim(δr−1
1 )−1(j r−1

x (dω)) = rk(Ker δr−1
1 ) = rk(Im δr0)

= rk J r+1(M,R)− rk(Ker δr0)

=
(
n+ r + 1
r + 1

)
− 1.

Hence, the vector fields{Yβ |1 6 |β| 6 r + 1} span the tangent spaces to the fibres ofδr−1
1 ,

and the proof is complete. �

3.4. How to calculateL̄

Proposition 5. A LagrangianL : J r(T ∗M) → R is gauge invariant if and only if
L ◦ j r(ω+ df ) does not depend onf for every function inC∞(M) and every one-formω
onM.

Proof. If L is gauge invariant, according to the previous theorem we have(L ◦ j r(ω +
df ))(x) = L(j rx (ω+ df )) = L̄(j r−1

x dω), thus proving thatL ◦ j r(ω+ df ) does not depend
on the function chosen. The converse is an immediate consequence of the exact sequence

J r+1(M,R)
δr0−→ J r(T ∗M)

δr−1
1−→ Zr−1

2 (M) → 0

which follows from Proposition 2. �
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Remark 2. In practice, the above proposition means that in substitutingpiα +
∂ |α|+1f/∂qα+(i) for piα, 06 |α| 6 r, in the arguments ofL, the partial derivatives of
the arbitrary functionf vanish if and only ifL is gauge invariant.

For any indicesi1, . . . , ih, we set (i1 . . . ih) = (i1) + · · · + (ih), so that the multi-
index (i1 . . . ih) depends symmetrically on the indicesi1, . . . , ih; for example(ij) = (j i),
(ijk) = (jki) = (ikj) = · · ·, etc.

Proposition 6. Let (qh, piα), 1 6 h 6 n, 1 6 i 6 n, 0 6 |α| 6 r, be the coordinate
system on(p1)−1

r (N) induced from an open coordinate domain(N; qh) in M, as introduced
in section 2.1, formula (1). We set

ζ
ij

(k1...kh)
= pi(jk1...kh)

− p
j

(ik1...kh)
if j > i 6 k1 6 · · · 6 kh

η
ij

(k1...kh)
= pi(jk1...kh)

+ p
j

(ik1...kh)
if j 6 i 6 k1 6 . . . 6 kh

where 06 h 6 r − 1, i, j, k1, . . . , kh ∈ {1, . . . , n}. Then, we have the following.
(1) The functions(qh, ph, ζ

ij

(k1...kh)
, η

ij

(k1...kh)
) are a coordinate system inJ r(T ∗M).

(2) Assume a LagrangianL : J r(T ∗M) → R is gauge invariant. Then, expressed in
the above coordinate system, the LagrangianL only depends on the variablesqh, ζ

ij

(k1...kh)
,

and this is the local expression for the functionL̄ when we substitutepij(k1...kh)
for ζ ij(k1...kh)

.

Proof. As a simple computation shows, from the above formulae we obtain:
(1) if j < i 6 k1 6 · · · 6 kh, then

pi(jk1...kh)
= 1

2(ζ
ij

(k1...kh)
+ η

ji

(k1...kh)
)

(2) if i = j 6 k1 6 · · · 6 kh, then

pi(ik1...kh)
= 1

2η
ii
(k1...kh)

(3) if j > i < k1 6 · · · 6 kh, then

pi(jk1...kh)
= η

ij

(k1...kh)
− 1

2η
k1j

(k2...kl ikl+1...kh)
− 1

2ζ
jk1

(k2...kl ikl+1...kh)

where 16 l 6 h is the least integer such thatj < k1 6 · · · 6 kl 6 i 6 kl+1 6 . . . 6 kh;
(4) if j > i = k1 6 · · · 6 kh, then

pi(jk1...kh)
= η

ij

(k1···kh) − 1
2η

jj

(k2···kl ikl+1···kh)
wherel is defined as in item (3).

This proves the first part of the statement. The second part follows directly from the
definitions and our hypothesis. �

Example 7. There is a general procedure in order to obtain quadratic gauge invariant
Lagrangians of arbitrary order. Letg be a pseudo-Riemannian metric on a manifold
M. For everyx ∈ M, the metric induces an isomorphism[ : TxM → T ∗

x M given
by X[(Y ) = g(X, Y ). The inverse of[ is usually denoted by] : T ∗

x M → TxM, and
we can define a non-degenerate quadratic form (still denoted byg) on T ∗

x M by setting
g(α, β) = g(α], β]). More generally, we can define a metric on

∧r
T ∗M by setting

g(α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr) = det(g(αi, βj ))
r
i,j=1.

Finally, we can define a metric onSkT ∗M ⊗ ∧r
T ∗M as

g(α1 � · · · � αk ⊗ ωr, β1 � · · · � βk ⊗ ω′
r ) =

∑
π∈Permk

k∑
i=1

g(απ(i), βπ(i))g(ωr, ω
′
r ).
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Let ∇ be the Levi–Civita connection ofg, and let

ρr : J r
( 2∧

T ∗M
)

→ SrT ∗M ⊗
2∧
T ∗M

be the retract of the natural injection ofSrT ∗M ⊗ ∧2
T ∗M into J r(

∧2
T ∗M) in the exact

sequence of vector bundles overM,

0 → SrT ∗M ⊗
2∧
T ∗M → J r

( 2∧
T ∗M

)
→ J r−1

( 2∧
T ∗M

)
→ 0

given byρr(j rxω2) = sym(∇rω2)x , where sym stands for the symmetrization operator. By
means ofρr , we can thus obtain a splitting

J r
( 2∧

T ∗M
)

∼= J r−1

( 2∧
T ∗M

)
⊕ SrT ∗M ⊗

2∧
T ∗M.

Inductively, for everyr > 0, we can define a metric onJ r(
∧2

T ∗M) by the formula

g(j rxω2, j
r
xω

′
2) = g(j r−1

x ω2, j
r−1
x ω′

2)+ g(ρr(j
r
xω2), ρr(j

r
xω

′
2)).

According to Theorem 4, we thus have a gauge invariant Lagrangian

Lr : J r(T ∗M) → R

by settingLr (j rxω) = 1
2g(j

r−1
x (dω), j r−1

x (dω)) Notice thatLr = L̄r ◦ δr−1
1 , where 2L̄r is

the norm of the metric induced onJ r−1(
∧2

T ∗M), as explained above.
Let us now consider the particular caseM = R2 with the standard Lorentzian metric

g = dq2
0 −dq2

1. First we shall compute the local expression forL2. Let ω = f0 dq0 +f1 dq1

be an arbitrary one-form onM. In our case we have

L2(j
2
x ω) = 1

2g(j
1
x (dω), j

1
x (dω)) = 1

2{g(dω, dω)(x)+ g(∇ dω,∇ dω)(x)}.

Hence,

L2 = 1
2{(p0

(11) − p1
(01))

2 − (p0
(01) − p1

(00))
2 − (p0

1 − p1
1)

2}

and the corresponding Euler–Lagrange equations are

∂2f0

∂q2
1

− ∂2f1

∂q0∂q1
− ∂2f0

∂q2
0∂q

2
1

+ ∂2f1

∂q3
0∂q1

+ ∂2f0

∂q4
1

− ∂2f1

∂q0∂q
3
1

= 0

− ∂2f0

∂q0∂q1
+ ∂2f1

∂q2
0

+ ∂2f0

∂q3
0∂q1

− ∂2f1

∂q4
0

− ∂2f0

∂q0∂q
3
1

+ ∂2f1

∂q2
0∂q

2
1

= 0.

As a simple (but rather long) computation shows, the above equations can be intrinsically
written as

(δd + (δd)2)(ω) = 0

whereδ stands for the codifferential operator.
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