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Abstract. Higher-order Lagrangians ofi*(M) invariant under the natural representation of
gauge fields of\ x U (1) on the cotangent bundle are determined.

1. Introduction

Letr : P — M be aG-principal bundle. The geometric interpretation of Utiyama'’s
theorem ([4, 18]) states that a Lagrangidnon the 1-jet bundle of the connections Bf
is invariant under the natural representation of the gauge algebia @ connections,
if and only if £ factors through the curvature mappirg(this is the map sending each
connection™ onto its curvature forn®r = dwr + [wr, wr]) as follows £ = Lok, wherel
is a function on the curvature bundle—viewed as a zero-order Lagrangian—which in turn
must be invariant under the gauge algebra representation. In the Abelian case the above
statement is particularly simple sin€eautomatically becomes gauge invariant as the adjoint
representation of the Abelian group is trivial and hence the theorem simply states that
the Lagrangian is invariant if and only if it factors through the curvature mapping, which
is nothing but the exterior differential @ in this case.

The aim of this paper is to extend the above result to higher-order Lagrangians. Without
doubt, in field theory the most important Abelian groupligl), so we confine ourselves
to considering the trivial bundléf x U (1), where the manifold/ can be understood to be
a spacetime. However, we do not make any hypothesis on it, assuming throughaout that
is an arbitraryn-dimensionalC*> manifold.

2. Gauge algebra representation orJ" (1T M)

2.1. Introducing the coordinate systems

Let (N; q1, ..., q,) be an open coordinate domainM. As usual, let us denote hy;, p;)
the coordinate system induced opt)~%(N) from (N; q1, ..., qn), p*: T*M — M being
the canonical projection; i.e.

w = §pi<w>(dq,-)x xeM
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7758 J MuAioz Masqe’and L M P Coonado

for every covectow € T'(M), where df denotes the differential of a functiohe C*>(M).
We parametrize the points iti (1) asz = exp(ir), so that(qi, ..., g,; t) is a coordinate
system forM x U(1). Let us denote byg;, p), 1 <i,j <n, 0< || < r, py = pi,
the coordinate system induced opt)1(N), where(pl), : J"(T*M) — M stands for the
canonical projection; i.e.

. 8“"‘(p,~ ] C())
1 .7 - M 1
pa(]xw) aqiél.“aqgn ()C) ( )
for every r-jet of differential form jlw € J(T*M), a = (1,...,a,) € N, |a| =
a1 + -+ a,. More generally, ifp* : /\" T*M — M is the canonical projection and
qj, Pir,...ii)» L < j,i1 < --- < iy < n, stands for the induced coordinate system on
(pH7H(V), that is,
we= Y Pii g A A D) @

1I<ip<--<ix<n
for everyk-covectorw;, € Ak T*M, then we denote by
(qj, pir=™) 1<jiv<---<ip<n 0< || <7

the induced coordinate system op)~1(N), defined as in formula (1). Basically, we are
concerned with the casés= 1, 2.

2.2. Gauge fields o x U(1)

As is well known (e.g. [4(3.2), 8(l11.35), 13(3.1)]), gauge transformationsvbi U (1) can

be identified with the automorphisms #&f x U (1) that induce the identity ove¥. More
precisely, an automorphism o8f x U (1) is a diffeomorphism® : M x U(1) > M x U(1)
such that®(u - g) = ®(u) - g, Vu € M x U(1), Vg € U(1). This implies that® maps
each fibre of pr: M x U(1) — M onto another fibre and hence there exists a unique
diffeomorphism¢ making the following diagram commutative:

M x U(1) % M xUQ)

pry pru

M L) M

If ¢ is the identity map ofM, then we say thatb is a bundle automorphism or a
gauge transformation and this means tdattransforms each fibre oM x U(1) onto
itself. It is not difficult to see that bundle automorphisms are locally parametrized as
d(x,1) = (x,t + ¥ (x)), for a differentiable functiony : N — R (cf [9,1ll.B]). Let us
denote by Ga x U(1)) the gauge group of the bundle; i.e. the group of all bundle
automorphisms. Geometrically, thgauge algebraof an arbitrary principal bundle is
introduced as the ‘infinitesimal version’ of its gauge group (cf [4(3.2.9-3.2.17), 8(111.35
p 278)]). This means that a vector field belongs to the gauge algebra of the bundle if and
only if the flow that it generates belongs to the gauge group; that is, it consists of gauge
transformations. Letb,, s € R, be the flow of a vector fieldk € X(M x U(1)). Then, it
is quickly checked tha®, € GauM x U (1)), Vs (that is, X belongs to the gauge algebra)
if and only if:

(1) X isaU (D)-invariant, i.e.R,- X = X, Vz € U(1), whereRr, stands for the translation
by the element; and

(2) X is a py-vertical vector field onM x U(1); i.e. (pry).X = 0.
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Accordingly, we denote the vector fields satisfying (1) and (2) byt U (1)). Also,
it is easy to prove (e.g. see [9]) that a vector fi&len M x U (1) belongs to gau x U (1))
if and only if it can be locally written as

9
X=g(ql,--.,qn)§ g € CP(N). (3

2.3. The bundle of connections #f x U(1) andT*M

Let7 : P — M be an arbitrary principal bundle of structure grop The groupG acts

on the tangent bundle of in a natural way. SepQ = T(P)/G. Then, Q is endowed
with a natural vector bundle structure ovéf, whose sections can be identified with the
G-invariant vector fields o, and we have the following exact sequence of vector bundles
over M, the so-calledAtiyah sequencécf [2, Theorem 1]):

0—> L(P)—> Q= T(M)—> 0

where L(P) stands for the adjoint bundle; i.e. the bundle associateft toy the adjoint
representation of; on its Lie algebra. Given a connectidon P, the horizontal liftX* of a
vector fieldX on M is aG-invariant vector fieldr -projectable ontd (cf [10, II. Proposition
1.2]). Hence, we can define a sectign: 7 (M) — Q of the projectiont, : Q — T (M) in
the Atiyah sequence by setting (X) = X*, which completely determines the connection
I'. Moreover, any such section is induced by the horizontal lifting of a connectioA;on
in other words, the connections on a principal bundle can be identified with the splittings
of the Atiyah sequence of the given bundle (cf [2, p 188]). In this way we can construct
a fibre bundlep : C(P) — M (the bundle of connections) whose global sections coincide
with the connections omP, as follows.

The fibre of C(P) over a pointx € M consists of all linear maps : T,(M) — Q,
such thatr, o s is the identity map of the tangent spagM). If s’ is another element in
C(P),, then for every tangent vectdf € T, (M) we have

(8" = 5)(X) = 1 (5" (X)) —m(s(X) =X —X =0

and accordingly(s’ — s)(X) € kerm, = L(P); or, equivalentlys’ —s € T*(M) @ L(P),.
Furthermore, if we add a homomorphisne 7,/(M) ® L(P), to an element € C(P),, we
obtain another elementt-# in C(P),. Because of this, we say th&{P) is an affine bundle
modelled over the vector bundlE*(M) ® L(P). For the details of this construction we
refer the reader to [7]. By virtue of the properties of the horizontal lifting, every connection
I' determines a section ¢f : C(P) — M by the formulax — or(x), and conversely.

The cotangent bundle occurs in this theory as it can be canonically identified with the
bundle of connections of the trividl (1)-principal bundle py: M x U(1) — M; i.e. we
have a natural isomorphism of fibre bundles

C(M x U(L)) = T*(M).

In fact, let A be the standard basis of the Lie algebralafl); i.e. A is the vector ofu(1)
determined by the homomorphisk — U (1), r — expit). Then, every connection of
the former can be uniquely written agr = (dr + (pry))*w) ® A, wherew is an arbitrary
one-form onM, and the isomorphism between the bundle of connectiord ef U (1) and
T*M is stated by settingr < w.
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2.4. Representing ga x U (1)) in X(J'(T*M))

Each bundle automorphisi : M x U(1) — M x U(1) acts on the connections of this
bundle by the rulewe.r = (@ 1)*or([10, 11, Proposition 6.1(a) and (b)]). Taking into
account the identification between the bundle of connection® of U (1) and T*M, the
above action induces a diffeomorphism of the cotangent bubdl&*M — T*M, such that
pto® = pl. In this way we obtain a group homomorphism Giux U(1) — Diff(T*M).

Let @, be the local flow of a vector field € gauM x U(1)). Then, ®, is the local flow
of a vector fieldX € X(T*M), and the mappingd — X establishes a representation of
gauM x U (1)) into X(T*M), whose local expression is given by ([9])

~ ", 9g 9
X =- — 4
; dq; Op; )

if the local expression fok is that of formula (3). In other words, the natural representation
of the gauge algebra on the bundle of connectionsMofx U (1) coincides with the
Hamiltonian vector field associated to the functignin formula (3) with respect to the
exterior differential of Liouville’s form on the cotangent bundle.

The general formulae of vector field prolongation by infinitesimal contact transformation
to jet bundles (see [12] or [14]) and formula (4) above, then provide the following local
expression of the-jet prolongation of the vector field, denoted byX

K== Y ok ©)
== at( i
=7 =0 94 *+0 9p},

where (i) stands for the multi-indexi) = (0, ..., 1,...,0).

3. Classification of invariant Lagrangians

3.1. Invariant Lagrangians od” (T*M)

In the geometric formulation of the Lagrangian formalism for variational problems defined
on a fibered manifolgp : N — M, the notion of arth-order Lagrangian is introduced as an
arbitrary differentiable functiof : J"(N) — R defined on the-jet bundle of local sections

of p: N - M (e.g. see [1, 11,8, (IV.51)]). Therefore, in our casettaorder Lagrangian

is nothing other than a differentiable functigh: J"(T*M) — R. Locally, £ can be thus
expressed as a differentiable function of the coordinates.), 1 <i, j <n, 0< |a| <7

pb = pi, defined in section 2.1; or in other word8,depends on the coordinates of a point
in the ground manifold and on the partial derivatives up to ordeof the components

of a generic one-form oM. Such a Lagrangian is said to gauge invariantif for every
vector fieldX € gauM x U(1)), we have

glal+1
~ g BE
X(r)(ﬁ) Z Z aqa+(1) ap

i=1 |a|=

From this formula we thus quickly obtain the following proposition.

Proposition 1 A rth-order LagrangiarC on T*M is gauge invariant if and only if it
satisfies the following equations:

n aE
Y =0 VBe N, 1< |l <r+1 (6)
p )
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In particular, for|8| = 1, 2, we obtairdL/dp; = 0, 8£/8p}+8£/8p{ = 0, respectively,
which essentially is the contents of Utiyama’s theorem in the Abelian case; that is, a first-
order Lagrangian is gauge invariant if and only if it can be locally written as

L=Lign pi—pH.1<hi<j<n

Remark 1 For first-order Lagrangians the preceding definition of gauge invariance
is nothing other than the standard general notion of invariance for Lagrangians defined
on the connections of &-principal bundle in the particular case = U(1) (e.g. see
[4,10.2.15]) and in fact we obtain exactly the same results. Nevertheless, the advantage
of the preceding formulation lies in the fact that it allows us to generalize the notion of
gauge invariance directly to arbitrary order Lagrangians in a very natural way. Let us
explain this in detail. As is well known ([3, 15, 17]), the transformation law of a gauge
potential on aG-principal bundle under a gauge transformatioa C*°(M, G) is given by

A’ = hdh~' + hAh~L. In the particular cas& = U(1), we thus haved’ = hdh™! + A.

Writing 2(x) = exp(i¥ (x)) and identifyingA to an arbitrary one formrd = A; dg; on M,

we then obtainA; = A; 4+ 9y//dg;, or more intrinsicallyw’ = o + dy. This certainly
shows that Maxwell's equation®(dw) = §F = 0 remain invariant under the family of
transformations,w = w + ¢t dyy. Moreover, probably the most simple method of obtaining
Euler-Lagrangian equations which are invariant under gauge transformations is to start
with a gauge invariant Lagrangian. In any case, we know that gauge invariant Lagrangians
produce gauge invariant field equations. According to the previous transformation rules,
the LagrangianC(x, A;(x), dA;/dq;(x)) is gauge invariant if and only if

L(x, Ai(x) + 09/9; (x), A; /0, (x) + 0%4/dq;0q; (x)) = L(x, A;(x), DA; /3 (x)).

From the above equation, it is not difficult to prove tifashould be independent af;, and
should only depend o84, /dq; throughdA;/dg; — dA;/dq;, which are the components of
the curvature form. With the notations introduced in 2.1, noticeplj‘i]@l;}w) = 3A;/0q;(x),
so that the preceding result can be restated by sayingthsia differentiable function of
i and p; — p/, as we did above.

3.2. The operators; *

In order to classify higher-order invariant Lagrangians we need to introduce some
preliminary tools. The exterior derivative

k k+1
d: F<M, /\T*(M)) — F(M, /\T*(M))
is a first-order differential operator so that it factors linearly through the 1-jet extension

giving rise to a homomorphism of vector bundles oyér
k+1

5 J1</k\T*M> — N\T*M (7)

i.e. 8 is the unique homomorphism of vector bundles such 8hatlwy) = (dwy),, for
every differentialk-form w; of M defined on a neighbourhood af € M (cf [5(14.1),
16(Theome 1l.4a)]). By applying the/"~! function to this map and restricting to the
holonomic subbundle, we can define a homomorphism of vector bundles

k k+1
st J(/\ T*M) — J"—1</\ T*M) (8)
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as being the composite

J(/k\ T*M) < J"1<Jl</k\ T*M)) 740 Jfl(kj\lT*M) 9)

that is,a,ﬁ‘l(j;a)k) = j’}(dwy). Then, we state the following ‘jet version’ of Poinés
lemma.

Proposition 2 The following exact sequence of homomorphisms of vector bundles over
M, holds true:

k=1 e k st k+1
J’+1</\ T*M) i J</\ T*M) SN J’—1</\ T*M).
Proof.  We first recall that for every vector bundle — M, we have an exact sequence
of vector bundles oveM:

0> ST*M)®E — J'(E) > JYE)—> 0. (10)

Leting E = A“'T*M, we prove that the restriction o8; , to the subbundle
SHT*M) @ NTT*M < JYATT*M) coincides with the Spencer operator
(cf [6, (VIII. Proposition 2.1), 12, (Il section 22, formula (22.4)]). To do this, let us consider
a coordinate systertw; q1, ..., g,) centred atc € M, so that the element

t = (0gig)x @ -+ © (dgi,))x ® (Agj)x A -+ A (dgj)x € STTH(M) @ ATITH(M)
can be identified to
k—1
j;+1(%'0 .. 'qirdqu VANIAAN dqjk) S thLl(/\ T*(M)>

Hence, the element
,
8/:_1(t) = j;+l< Zqio cee ‘?ih .. 'ql}dqih A dqu ARRRAY dqjk)
h=0
is identified to

> (dgip)x © -+ @ (Ags,)x © -+ © (dgi, )x ® (Agi,)e A (Agp)s A -+ A (dgy)s
h=0

thus proving our claim. Moreover, it follows from the definition of the operasgrs, that
S tosr =0.

In order to prove that Kes; ' < Im §;_,, we proceed by induction on Forr = 1,
we have the following commutative diagram:

0 0 0
S2T*M <z;>¢/\"*1 "M — T*M ®¢/\" "M —> /\k+l¢T*M
\ i i
12(/\1(—1 T*M) i*g Jl(/\k T*M) 119) /\k+1 T*M
\ \ \
JYN T T M) Iy N T*M — 0
\ \

0 0.
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The first row is nothing but a part of Koszul's complex so that it is exact. Furthermore,
8,?71is surjective as it is checked working in local coordinates; in fa@;i( iX(qi, dgi, A
-+- Adg;,)) = (dgi)x A -+ A (dg;,).. Hence, the second row of the diagram is also exact.
Forr > 2, we have a commutative diagram

0 0 0
\ \ \
SHT*MQNTTT*M — STMINTM — S IT*M N T*M
! ! 1 !
8y re
AT BB AN Ty 2 A T
\ ) \ \
5’: 5;‘—2
JTNTTT M) = JUYNTTM) S TN T M
\ \: \
0 0 Q

Again, the first row is exact as it is a part of Koszul's complex and the third row is also
exact by virtue of the induction hypothesis. Hence the exactness of the second row can be
proved by diagram-chasing. |

Proposition 3 If M is connected, the homomorphism

k=1 k
& 4 J’“(/\ T*M) — J(/\ T*M)
is of constant rank. Accordingly, 14f_, and Kers;_, are vector subbundles of

J' (N T*M) and I AT T* M), respectively.

Proof. ~ As M is connected, given two points, x’ € M, there exists a diffeomorphism
¢ M — M, such thatp(x) = x’. From the propertyy*(dw;_1) = d(¢*wi_1), we deduce
a commutative diagram

8
JHNTTT M) S (N T M)
Jr+1(/\k*l w*) T 2 N T Jr(/\k )

JHNT T M) JLON T M)
and since the vertical arrows are isomorphisms, we obtaird;ik, = rk, §;_;. O
3.3. The classification theorem
Theorem 4  With the above notations, for every> 2, we set

2
75N M) =1Im 8t =Ker sy 2 C J"l(/\ T*M).

Then, a Lagrangiaif : J"(T*M) — R is gauge invariant if and only if it can be written
asL = L o 8;7%, for a differentiable functiorC : Z,~*(M) — R.
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Proof. =~ The problem reduces to proving thétis gauge invariant if and only if it is
constant on the fibres @ *, asé; ! : J/(T*M) — Z5"*(M) is a surjective submersion.
Furthermore, the fibres cﬂfl are connected as they are affine spaces; in fact, for every
one-formw on M we have

67 H M) = (87HTHO) + il (@) (11)

where Q stands for the zero vector 'u';“l(/\2 T*M). Hence, it suffices to prove thatis
gauge invariant iff for everyig‘l-vertical vector fieldY on J"(T*M) we haveY (L) = 0.
According to formula (6) characterizing gauge invariant Lagrangians, all we need to prove
is that the tangent spaces to the fibresﬁgof1 are spanned by the vector fields

n 8
Yo=Y — VBeN' 1< |Bl<r+1

iz g

Moreover, as a calculation shows, the local equations for the homomorﬁ@Tél’rare as
follows:

G ; o
Pg o8 = Phai) ~ Phra) i< 0<Iflsr—1

Hence(sg‘l)*(Yﬁ) = 0, thus proving that the vector field$ are tangential to the fibres of
8171 It is not difficult to see that the vector fields are linearly independent so that

kiYpll< Bl <r+ 1 =#peN 1< B <r+1}
= n+k—-1 n+r+1
=2 k =41 )71
k=1
and from formula (11) we have
dim(s;~H 7171 (dw)) = rk(Ker 8;7) = rk(Im &})
=rk J"*Y (M, R) — rk(Ker 85)
(n +r+ 1>
= -1
r+1
Hence, the vector field&rg|1 < |B| < r + 1} span the tangent spaces to the fibreé;@f*,
and the proof is complete. O

3.4. How to calculatel

Proposition 5 A Lagrangianl : J"(T*M) — R is gauge invariant if and only if
Lo j"(w+df) does not depend ofi for every function inC*°(M) and every one-fornw
onM.

Proof.  If £ is gauge invariant, according to the previous theorem we live;" (v +
df)(x) = L (w+df)) = L(j 1dw), thus proving that o j"(w +df) does not depend
on the function chosen. The converse is an immediate consequence of the exact sequence

S sL
J M, R) = J(T*M) = Zy7Y (M) — 0

which follows from Proposition 2. O
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Remark 2 In practice, the above proposition means that in substitutifjg+
Al £/9q*+® for pi, 0< |a| < r, in the arguments of, the partial derivatives of
the arbitrary functionf vanish if and only if£ is gauge invariant.

For any indicesiy, ..., i,, we set(iy...iy) = (i1) + --- + (ip), So that the multi-
index (i1 . ..i,) depends symmetrically on the indicas. .., i,; for example(ij) = (ji),
(ijk) = (jki) = (ikj) = ---, etc.

Proposition 6  Let (g4, p.), 1 < h < n,1<i < n, 0< || < r, be the coordinate
system on(pt);1(~N) induced from an open coordinate domaivi; ¢,) in M, as introduced
in section 2.1, formula (1). We set

Ql/fl k) = Pk ) — P(]ikl ) if j>i<ki<--<k
Mty k) = Plitarck) T Pliks i) fj<Si<kis...<kh
where 0< h <r—1,i, j, ki,..., ks € {1,...,n}. Then, we have the following.

(1) The functlons(q;,, Phs Sk ko k) @€ @ coordinate system iff (7*M).

(2) Assume a Lagrangiad : J"(T*M) — R is gauge invariant. Then, expressed in
the above coordinate system, the Lagrangfaonly depends on the variables, ;“(’,ﬁlmkh),
and this is the local expression for the functiSrwhen we substitut@:iilmkh) for Céil“‘k,,)-

Proof. As a simple computation shows, from the above formulae we obtain:
(1) If] <i <k < ---<kh,then

i P ji
Piitat) = 2Cgiy T Mk

) ifi=j<ki<---<ky, then
1

P(zkl ) = 2773« k)

@)if j>i <ky < - <k, then
j _ 1 kij 1
péjkl k) T n(kl k) T in(/iz Kyikpya. k) ?g(kz Kpikpyg.. kh)
where 1< [ < h is the least integer such that< k1 < --- <k <i < k1 < ... < ky;
(4) ifj>l—k1 -+ < ky, then
1 ji
Pukl d) = ’7<k1 ki) T 2y k)

wherel is defined as in item (3).
This proves the first part of the statement. The second part follows directly from the
definitions and our hypothesis. O

Example 7 There is a general procedure in order to obtain quadratic gauge invariant
Lagrangians of arbitrary order. Let be a pseudo-Riemannian metric on a manifold
M. For everyx € M, the metric induces an isomorphism: .M — T;M given

by X"(Y) = g(X,Y). The inverse ofb is usually denoted by : T*M — T.M, and

we can define a non-degenerate quadratic form (still denoted)byn 7'M by setting

g(a, B) = g(a®, B*). More generally, we can define a metric &d 7*M by setting

glar A= Aap, PrA - A B) = detig(a, B))); 1
Finally, we can define a metric o$f7*M ® \" T*M as

k
21O Ou®w, 1O OfQw) = Z Zg(an(i)vlgn(i))g(wrvw;)-
rePerm i=1



7766 J MuAioz Masqe’and L M P Coonado

Let V be the Levi—Civita connection g¢f, and let

2 2
or J’(/\T*M) - ST'Me \T*M

be the retract of the natural injection 8f7*M @ A?T*M into J"(A\® T*M) in the exact
sequence of vector bundles ovf,

2 2 2
0> ST*M ® /\T*M - J(/\ T*M> — J’—1</\T*M) -0

given by p, (jlwp) = sym(V wy),, where sym stands for the symmetrization operator. By
means ofp,, we can thus obtain a splitting

2 2 2
J’(/\ T*M) ~ J’_l(/\ T*M) OSTM® \T*M.

Inductively, for everyr > 0, we can define a metric dﬁ(/\2 T*M) by the formula

cr—1

gUwz, jlao) = g(ji w2, ji ) + g(pr (i wa), pr (@)
According to Theorem 4, we thus have a gauge invariant Lagrangian
L, J(T*M) > R

by setting L, (jlw) = 3g(ji " (dw), ji~(dw)) Notice thatl, = L, o 8;*, where L, is
the norm of the metric induced cﬂ‘f‘l(/\2 T*M), as explained above.

Let us now consider the particular case = R? with the standard Lorentzian metric
g = dg2—dqg?. First we shall compute the local expression for Letw = fodgo+ f1dgq1
be an arbitrary one-form oM. In our case we have

Lo(j2w) = 38(j(dw), ji([dw)) = 3{g(dw, dw)(x) + g(V do, V dw) (x)).
Hence,

L2 = 3{(ply) — Pioy)* = Ploy — Ploo)” — (P — PD?)
and the corresponding Euler—Lagrange equations are

3% fo 32 f1 3% fo 32 f1 3 fo Pfi

0q?  0qodqr  9q20q?  9q39q1  dqi  dqodqd
3Pfo % Pfo  Pfr 92fo ’fh

C0g0dqr | 8q2  0q3dqr  9gf  9q09qd  9930q?

As a simple (but rather long) computation shows, the above equations can be intrinsically
written as

(6d+ 8d)?)(w) =0

wheres stands for the codifferential operator.
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